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Executive Summary 
 
This project aimed to implement the advances in new technologies to develop a robotic-based 
autonomous inspection system for underground pipelines. The new technology is based on the 
combination of intelligent powerful portable software and the newly advancement in 
mapping techniques.  The system can scan and reconstruct the 3D profile of a pipeline in real-
time using a networked system of ground robots. LiDAR (Light Detection And Ranging), Infrared 
(IR) cameras and 3D cameras with other NDT (Non-Destructive Testing) sensors used to generate 
the 3D profiles of the pipes as the robots with the advanced sensors autonomously move inside the 
pipes. During the pipe condition assessment, video files, pictures, and other scans like 
LiDAR and 3D are used to acquire a lot of data. This becomes cumbersome to interpret 
and make meaning out of. In the context of human decision-making, we aim at reducing 
and reordering the data to show to the human inspectors to enhance their decision 
performance. The proposed method is based on computer vision and pattern recognition 
algorithms that have proven to improve the proficiency of the inspection process in 
identifying and locating important features and defects. A complete technology transfer 
system is developed and proposed to NCDOT for implementation. 
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Introduction 
According to the pipeline incidents data provided by PHMSA for nearly ten years, there 
were 280 total pipeline-related incidents during that time. In addition, there were nearly 
538 injuries and 112 fatalities. The data revealed the always-present dangers that pipe 
inspectors face on a daily basis see Table 1. 

Table 1 PHMSA Pipeline Incidents: (2012-2021) 

Calendar year Number Fatalities Injuries 
2012 28 10 54 
2013 24 8 42 
2014 27 19 94 
2015 26 9 48 
2016 38 16 86 
2017 23 7 30 
2018 36 6 78 
2019 25 11 35 
2020 27 15 40 
2021 26 11 32 

Grand Total 280 112 538 
 
To reduce incidents related to pipelines and underground pipe networks, it is necessary to 
inspect and monitor the condition of said networks. The currently used methods mostly 
depend on manual visual inspection using CCTV cameras. This process is time consuming 
and depends mainly on the inspectors’ experience and skill level. This project aims to 
develop a full inspection system which includes a fully developed defect detection 
algorithm which automatically analyzes the video footage and notes what the defects are 
and where they exist. It also aims to utilize unmanned ground vehicles which automatically 
navigate and map the inspection area which saves a lot of time and cost due to it being 
automated. Finally, the system also aims to present summarized data at the end which 
would be easy to read and interpret by any future inspector.  

Organization of report: 
The project has been split into four main tasks and each task has a chapter explaining the 
work that has been done in it. This report is organized as follows: 

1) Literature review: Contains the state-of-the art technologies I the field and previous 
research information that has been done on the area. 

2) Equipment: Information on the equipment used in this project. 
3) Task 1: Integration of Ground robots, Arms and Sensors: the purpose of this task is 

to show the work done on the integrations of the different robots and how they are 
connected to each other. This task is directly related to task 3 and therefor, some 
work is shared between them. 
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4) Task 2: Detection and Classification: shows the algorithms that were tested and 
developed for defect detection. 

5) Task 3: Collecting Data from Sensor Networks: Mainly focuses on the mapping 
that has been done by the robots and the algorithms used to produce said maps. 
Directly related to task one since mapping and navigation are working 
simultaneously. 

6) Task 4: Data Reduction: shows the algorithm used to reduce the data gathered and 
analyzed. 
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Literature Review 
A city's drainage system is a crucial part of its infrastructure. Its pipes deteriorate gradually 
as the drainage system ages and depend on factors such as usage conditions and extrinsic 
factors [1]. Corrosion of the pipe surface must be detected quickly and accurately. 
However, manual surveying by human inspectors is notoriously time-consuming and 
labor-intensive. The task of detecting pipe corrosion can be automated with image 
processing by using an image processing-based method [2].  

Various technologies have been applied in pipe inspection. A most recent survey conducted 
a thorough investigation of these methods and categorized them into visual methods, 
electromagnetic methods and acoustic methods, and ultrasound [3]. Among them, CCTV 
(visual method) is one of the most widely applied sewer inspection methods due to its 
relative ease of use and the municipalities and contractors’ familiarity with this technology 
[4]. The CCTV method is subjective and lacks image analysis to support the operator 
reviewing the video. Inspectors have to stop and check the area of interest during the 
inspection. 

To assist decision-makers in evaluating culvert conditions, a variety of inspection 
technologies and procedures are available. These inspection methods range from simple 
end-of-pipe visual inspections to complex culvert condition profiles generated by laser 
profiling. Inspection procedures are usually classified into three main categories: 

There is the video recorded inspection, end-of-pipe inspection, and measurement-based 
inspection. This video-recorded inspection is straightforward. It simply uses advanced 
imaging technology to record and capture the condition of the culvert or pipe. The end-of-
pipe inspection entails visually inspecting and recording the condition of a culvert. A 
regular part of an end-of-pipe examination is measuring the diameter at the inlet and exit 
of a culvert. For the measurement-based inspection, the internal diameter, ovality, slope, 
debris quantity, location/extent of holes in the pipe wall, and wall strength are all different 
types of measurements taken. This is done by using inspection equipment to measure and 
assess the wall integrity from within the culvert. 

End-of-pipe inspection is a low-cost inspection approach that is also quick and allows for 
a full-system assessment. However, when it is not complemented with manned access, it 
only provides a limited view into the culvert. Inspection data is only as exact as the inlet's 
reach/access, and accuracy decreases as lighting decreases. 

Closed-circuit television (CCTV) inspection techniques are still the most widely used 
approach for assessing the condition and operability of sewer systems. Despite the 
undeniable improvement in video quality over the last few decades, the CCTV concept for 
sewer inspection has been consistently criticized [5]. Two major concerns have been 
identified: 
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The first drawback is that only a snapshot of the condition is obtained, which means there 
is no information on the degradation process or reason. Another issue is the lack of 
accuracy and consistency. Due to the reliance on human observation of images, the result 
has a high rate of false negatives and positives in defect identification. Furthermore, 
individual inspectors' numerical classifications, which range from good to poor, can differ 
by up to two steps. 

Efforts to reduce the human factor, such as recent research on applying automated image 
processing techniques using pattern recognition and machine learning (e.g [4], [6], [7], 
have shown promising results (accuracies of around 90%), especially in their ability to 
reduce the percentage of false negatives. Correct classification, on the other hand, remains 
a challenge. This is because the standards' classification approach is based on semantic 
descriptions rather than precisely defined measurable metrics. 

Manual detection is widely regarded as being less accurate and time-consuming. Machine 
detection methods based on an ultrasonic, microwave, and other signals have advanced fast 
in recent [8]–[11]. There are several crack detection methods available, each of which can 
be classified into one of several categories. The first type includes an excitation device at 
one end of the structural member and a receiving device at the opposite end. The position 
and depth of fractures can be determined without causing any structural damage by 
analyzing the properties of the waveform amplitude and frequency. However, the 
recognition accuracy of this method is low. The second kind is based on the minimum path 
[12]–[14], which takes into account the image brightness and geometric properties. The 
path is made up of a succession of contiguous pixel values, the intensity is determined by 
the sum of the adjacent pixel values, and the crack is the shortest path. This method 
necessitates a significant amount of computational effort. The third technique relies on 
image processing, which entails applying filters to the gathered crack images, such as 
median and mean filtering, and then recognizing the cracks using the Hough transform, 
binarization, and tensor voting [15]–[20]. The fourth method relies on classic machine-
learning algorithms [21], in which crack images are preprocessed using algorithms like 
random forest and AdaBoost [22]. Deep learning is another way for crack detection and 
recognition. This method is distinguished by the use of convolutional neural networks and 
segmentation algorithms to recognize, segment, and extract cracks, as well as the 
augmentation of the [23]–[26].  

To recognize crack images, three neural networks are used: AlexNet [27], VGGNet13 [28], 
and ResNet18 [29], and they are tested against each other based on the evaluation 
indications. Second, to classify crack photos, the crack area must be detected. Currently, 
two types of detection algorithms are widely used: The first is a two-stage approach based 
on regional suggestions, such as Fast R-CNN [30] and Faster R-CNN [31], and the second 
type is one-stage methods, such as SSD [32] and YOLO v3 [33]. Because the YOLOv3 
model has the advantage of faster training speed over other models, it is frequently utilized 
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in the industry, particularly in cases where high precision is not required, such as crack 
detection. We discovered that YOLOv3 can accurately distinguish crack photos and detect 
the crack area in real-time in this experiment. 

As a result, using a computerized process to detect and analyze surface cracks is extremely 
valuable in replacing the tedious and subjective inspection of human inspectors [34]. 
Recent evaluations found a growing trend of using image processing techniques to improve 
the productivity of crack detection in [34]–[37]. 

Many fields rely on the quantitative evaluation of surface defects in materials. Accurately 
estimating the actual sur-face defects of some equipment can directly affect the assessment 
of that equipment's service life and performance [38]. A study has proposed creating a real-
time automated defect detection system using a deep-learning algorithm and CCTV 
footage. As deep learning techniques develop, a state-of-the-art convolutional neural 
network (CNN) based object detector, the YOLOv3 network, has been used in this study. 
The model used in this study has been trained using a data set of 4056 samples containing 
six types of defects and one type of construction features. Average precision is used to 
validate the model. A proposed system output includes labeled CCTV videos, frames con-
training defects, and associated defect information [1]. 

A diagnostic system by applying machine learning approaches to CCTV inspection images 
is proposed by Yang et al. to help general staffs diagnose pipe defects more efficiently. In 
this study, three neural network approaches were adopted to classify leaky pipe patterns-
back propagation neural network (BPN), radial basis network (RBN), and support vector 
machine (SVM), and their performance was compared [39]. 

Researchers sought to extract pipe surface features using image texture, gray-level co-
occurrence matrix, and gray-level run-length data. A decision boundary can be built to 
recognize corroded and intact pipe surfaces using the support vector machine. Furthermore, 
experimental results supported by Wilcoxon signed-rank testing support the validity of the 
proposed method, with an accuracy rate of greater than 90% [2]. In a paper published in 
1999, the basic components and architecture of the system are described; there are four 
major modules in this product that automate image acquisition, image processing, feature 
extraction, and defect classification [40]. Using neural networks to classify defects in 
underground sewer pipes, they published another article the following year. To classify 
four defect categories, a three-layer (i.e., one hidden layer) neural network was developed 
and trained using a back-propagation algorithm [41]. 

Based on defect detection and metric learning, a framework is introduced for tracking 
multiple sewer defects in CCTV videos to identify the defect across consecutive CCTV 
frames and the number of defects in the video to determine the pipe condition. The team 
developed a defect detection model based on deep learning and a metric-learning algorithm  
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[42]. An article on sewer CCTV inspection videos presents a new approach to automated 
anomaly detection and localization. Authors exploited 3D Scale Invariant Feature 
Transforms (SIFTs) to extract spatiotemporal features from sewer CCTV videos [43]. 

The YOLO model has shown promise in the field of object detection by decreasing 
computational load and time at the expense of accuracy. This has led to the development 
of other models such as the Single Shot Multibox Detector (SSD) [44]. The SSD model 
performs multiple objects detection in a single shot unlike the two-stage counterparts such 
as the Faster R-CNN model which makes it much faster without sacrificing much accuracy 
[45]. SSD is mainly comprised of two steps which are extracting feature maps and object 
detection using convolution filters and it has proven successful [46]. In addition to SSD, 
the Faster R-CNN model also has been used in object detection [47] and is also used in this 
project.  

In addition to the defect detection algorithms, the fields of ground robot mapping and 
navigation are crucial in the world of robotics. They involve creating an accurate depiction 
of a robot's surroundings and providing the capability for it to autonomously navigate 
through its environment. These abilities are indispensable for numerous operations such as 
exploration, surveillance, search and rescue, and automated delivery systems.  

Sensor-Based Mapping: 

In the realm of sensor-based mapping, data gathered from an array of sensors are used to 
create a depiction of the environment. A common method employed for this is 
Simultaneous Localization and Mapping (SLAM), which aids robots in developing maps 
while concurrently determining their location within these maps. Initially, these methods 
depended on cameras and range finders, but current technological developments have 
ushered in the use of more advanced tools like LiDAR, depth sensors, and RGB-D cameras, 
providing more precise and comprehensive mapping. 

Mapping in Dynamic Environments: 

Dynamic environments, characterized by the presence of moving objects, pose challenges 
to effective mapping. Multiple techniques have been proposed to tackle the issues of 
identifying, tracking, and integrating dynamic objects into the map-making process. 
Probabilistic model-based methods, such as occupancy grids and particle filters, have 
proven successful in these fluctuating environments. 

Path Planning and Navigation: 

Following the creation of a map, the robot must navigate through the environment, 
requiring path planning. Algorithms for path planning strive to discover optimal or near-
optimal paths, taking into account elements like obstacles, terrain, and robot dynamics. 
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Conventional methods, like potential fields and graph-based algorithms, have seen 
widespread use. Contemporary approaches have begun to leverage machine learning 
techniques, including reinforcement learning and deep learning, to enhance path planning 
and navigation performance. 

Localization and Sensor Fusion: 

Precise robot localization is essential for efficient mapping and navigation. Techniques 
involving sensor fusion, which amalgamate data from multiple sources like odometry, 
GPS, IMU, and visual sensors, are typically employed to improve localization precision. 
Advanced methods of localization, such as feature-based, landmark-based, and map 
matching, are used to cater to different scenarios and increase robustness. 

Multi-Robot Systems: 

Ground robot mapping and navigation can significantly benefit from multi-robot systems, 
offering benefits such as expanded coverage, enhanced collaboration, and improved fault 
tolerance. Techniques fostering cooperative mapping and navigation have been studied, 
allowing robots to exchange information and synchronize their actions to achieve shared 
objectives. Research in this field is centered around communication protocols, task 
allocation, and coordination strategies. 
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Equipment 
 

We used two concrete pipes in the structural lab on the A&T campus to test the 
equipment. The pipes are shown in Figure 1. 

 

Figure 1 Structural lab concrete pipes specimens 

For this project, the following 3 different robots carrying multiple sensors were used. 
These robots are the Husarion ROSbot, the Jackal unmanned ground vehicle (UGV), and 
the Husky UGV shown in Figure 2. 

   

(a) Husarion ROSbot (b) Jackal UGV (c) Husky UGV 

Figure 2 Project robot vehicles 
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The technical details for the robot vehicles are as follows: 

The ground robots’ details are shown in Table 2. 

Table 2 Ground robots’ details 

Attribute Husarion ROSbot Jackal Husky 

External dimensions 200 x 235 x 220 
mm 

508 x 430 x 250 
mm 990 x 670 x 390 mm 

Weight 2.84 kg 17Kg 50Kg 

Max payload 5 kg 20Kg 75Kg 

Max speed 1.0 m/s 2.0 m/s 1.0 m/s 

Runtime 1.5 – 5 hours 

Basic usage: 8 
Hours 

Heavy usage: 2 
Hours 

Standby:8 Hours 
Nominal usage: 3 

Hours 

 

As for the LiDARs used, we used two Velodyne Lidars, the VLP-16 and the HDL-32E. 
They are shown in Figure 3. 

  
(a) VLP-16 (b) HDL-32E 

Figure 3 Velodyne LiDARs 
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The specifications of the Velodyne LiDARs are shown in Table 3.  

Table 3 Velodyne LiDARs specifications 

 VLP-16 HDL-32E 
Channels 16 16 

Range Up to 100 meters Up to 100 meters 
Accuracy +/- 3 cm (typical) +/- 3 cm (typical) 

Field of view 
Vertical: 30° (+15° to -

15°) 
Horizontal: 360° 

Vertical: 41.33° (+10.67° 
to -30.67°) 

Horizontal: 360° 
Vertical angular 

resolution 2° 1.33° 

Horizontal angular 
resolution 0.1° – 0.4° 0.1° – 0.4° 

Rotation rate 5-20 Hz 5-20 Hz 
 

In addition to the Velodyne LiDARs, we also used the Intel RealSense LiDAR camera 
L515 attached to the Husarion ROSbot for use in defect detection. This camera LiDAR 
uses laser scanning technology and has a field of view (FOV) of 70° and a range of 0.25m 
- 9m which is affected by reflectivity. Figure 4. 

 

Figure 4 Intel RealSense LiDAR camera L515 

  



14 
 

Task 1: Integration of Ground Robots, Arms, and Sensors  
In this task, the focus is on the integration of robots. This is demonstrated best in the 
mapping which is technical part of task 3 but is also presented here due to it being highly 
relevant and it running simultaneously with the navigation algorithm. 

 

Figure 5 Autonomous 3D mapping and inspection using multiple ground robots 

We propose a 3D mapping framework to automatically generate the 3D point cloud of the 
environment in real time that can be used for determining pipe geometry and navigation. 
This also allows us to enable the robot to navigate for a specific defect or a specific point 
for further evaluation. Figure 5. 

Each robot will use the LiDAR sensor to generate its own 3D point cloud. Based on the 
location and orientation of each robot, the 3D map merge algorithm will combine all the 
3D point clouds together. The automatic map exploration algorithm will then select 
navigation point for each robot to obtain a complete 2D map of the environment. While 
robots are moving, the iterative closest point algorithm will calculate the transformation 
between the point clouds to build the 3D map of the environment. 

Cooperative mapping by multiple robots 
Cooperative mapping by multiple robots is a highly advantageous approach, particularly 
in large-scale environments, where the benefits of collaboration become evident. By 
distributing the task of exploration among several robots, we can achieve increased 
coverage and persistence in mapping the surroundings. 

The main objective of this cooperative mapping approach is to optimize exploration and 
mapping efficiency. Through information sharing, robots can exchange their individual 
maps to prevent redundant efforts. This collaborative strategy enables the environment to 
be effectively partitioned among the robots, minimizing overlap and maximizing overall 
exploration efficiency. 
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By working together, the robots can navigate through the environment in a coordinated 
manner, efficiently covering more ground and ensuring that each area is explored 
thoroughly. This cooperative exploration and mapping approach is particularly beneficial 
in scenarios where time is a constraint or when the environment is vast, complex, or 
potentially hazardous for a single robot to handle alone. 

Moreover, the collaborative aspect of the mapping process allows for continuous mapping 
even if one or more robots encounter obstacles or malfunctions. The other robots can 
compensate for the affected areas, ensuring the mapping process remains uninterrupted. 

2D map merge 
Each robot in the team leverages its own set of sensor mechanisms, such as LiDAR, to 
generate an occupancy grid map specific to its immediate environment. This map is divided 
into cells, each representing whether the space is occupied, free, or unknown. The process 
of merging individual 2D maps into a comprehensive map involves determining the real-
world distances between the robots and using this information to align the maps accurately. 
By transposing these distances into Rviz which is a visualization tool, the maps can be 
combined seamlessly. The algorithm steps and outline are shown in Figure . 

 
(a) Map merge algorithm steps 

 
(b) Map merge algorithm outline 

Figure 6 2D map merge algorithm 
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Autonomous map exploration 
Certain robotics applications necessitate robots to autonomously generate a map of their 
environment for efficient navigation. A group of robots can initially explore the area and 
generate a map for subsequent robots to utilize. In this project we utilize two algorithms 
for this purpose. First, we have the frontier-based map exploration algorithm to detect the 
edges of the known area. The robots then use the A* algorithm to navigate the known area. 

Frontier-based map exploration: 
A commonly employed method in autonomous robot navigation is frontier-based map 
exploration. This algorithm seeks to explore an unknown environment in an organized and 
efficient manner, thus reducing the resources required for complete exploration. Figure 7. 

 

Figure 7 Framework of frontier-based map exploration algorithm 

Frontier edges, or boundaries between known and unknown spaces, are extracted from the 
occupancy grid map. The center of each edge is marked as an exploration target. The 
mission planner then uses the robot's current location and the available map data to devise 
the most effective route to the destination point. 

A* algorithm 
The A* algorithm is frequently used for pathfinding. It's designed to find the shortest path 
between two points on a graph or grid, blending the strengths of uniform-cost search and 
greedy best-first search with a heuristic to guide the search. The A* algorithm's process 
involves initialization, looping, goal-checking, generating successors, and, finally, path 
construction. Figure 8. 
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Figure 8 A* algorithm route planning 

Here's a step-by-step explanation of the A* algorithm: 

Initialization: 

• Create an open set that will store the nodes to be explored. Initially, only the starting 
node is in the open set. 

• Create a closed set to keep track of the nodes that have already been explored. 
Initially, the closed set is empty. 

• Assign a "g-score" value of 0 to the starting node. The g-score represents the cost 
of the path from the start node to the current node. 

• Calculate the "h-score" for the starting node using a heuristic function. The h-score 
estimates the cost of the cheapest path from the current node to the goal node. 

• Calculate the "f-score" for the starting node by adding the g-score and the h-score. 
The f-score is an estimate of the total cost of the path passing through the current 
node. 

• Associate each node with its parent node to keep track of the path. 

Loop: 

• While the open set is not empty, continue the loop. 
• Select the node with the lowest f-score from the open set. This node is considered 

the current node. 
• Move the current node from the open set to the closed set. 

Goal check: 

If the current node is the goal node, the path has been found. Construct the path by 
following the parent pointers from the goal node to the start node. 

Generate successors: 
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• Generate the neighboring nodes of the current node that have not already been 
explored. 

• For each neighbor: 
1- Calculate the tentative g-score by adding the cost of moving from the current 

node to the neighbor. 
2- If the neighbor is already in the closed set and the tentative g-score is greater 

than the neighbor's g-score, skip to the next neighbor. 
3- If the neighbor is not in the open set or the tentative g-score is lower than the 

neighbor's g-score: 
a- Update the neighbor's parent to the current node. 
b- Calculate the neighbor's h-score using the heuristic function. 
c- Update the neighbor's g-score with the tentative g-score. 
d- Calculate the neighbor's f-score by adding the g-score and the h-score. 
e- If the neighbor is not in the open set, add it to the open set. 

Loop continuation: 

If the loop ends without finding the goal node, there is no path from the start node to the 
goal node, indicating that the goal is unreachable. 

Path construction: 

Once the goal node has been reached, construct the path by following the parent pointers 
from the goal node to the start node. Upon reaching a frontier, the robot refreshes its map 
with new sensor data, identifies new frontiers, and repeats the process until the environment 
is thoroughly mapped. 

Upon reaching a frontier, the robot refreshes its map with new sensor data, identifies new 
frontiers, and repeats the process until the environment is thoroughly mapped. The process 
is shown in Figure 9 . 

  
(a) Map merging with known initial 

locations 
(b) Map updates while robots are 

moving 
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(c) Mapping result 

Figure 9 Multi-robot automatic map exploration process 
 

The iterative closest point (ICP) algorithm: 
The iterative closest point (ICP) algorithm plays a crucial role in the field of point cloud 
processing, particularly in applications involving LiDAR sensors. It is used in this project 
to construct one a unified 3D point cloud from multiple smaller ones which will give us a 
3D map from multiple robots. Point clouds are three-dimensional data representations 
consisting of numerous points in space, typically captured by LiDAR sensors. The ICP 
algorithm serves as a powerful tool for aligning and registering two point clouds, thereby 
minimizing the differences between them. 

 

Figure 10 The Framework of ICP algorithm 

The primary objective of the ICP algorithm is to estimate the transformation that aligns 
two point clouds together. By iteratively refining this transformation, the algorithm ensures 
that corresponding points in the real world align with each other through the computed 
transformation. Consequently, a coherent and accurate model of the environment can be 
incrementally constructed. Figure 10. 

To achieve this alignment, the ICP algorithm goes through a series of iterations. In each 
iteration, it associates points from one cloud (the "source" cloud) with their nearest 
neighbors in the other cloud (the "target" cloud). It then calculates the transformation that 
minimizes the distance between the corresponding point pairs. This process is repeated 
iteratively, refining the transformation estimation until convergence is achieved or a 
predetermined stopping criterion is met. 
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During each iteration, the ICP algorithm updates the transformation by minimizing the 
distance metric, typically the Euclidean distance, between corresponding point pairs. This 
optimization process aims to find the transformation that best aligns the two point clouds. 
The algorithm continues iterating until it reaches a satisfactory alignment or until the 
maximum number of iterations is reached. Figure 11. 

 

Figure 11 Pipe 3D map generated by ICP algorithm 

Overall, by combining the ICP algorithm, cooperative mapping, and autonomous 
exploration techniques, the result is an efficient and comprehensive exploration and 
mapping framework. The robots can collaboratively generate accurate maps of the 
environment, optimize exploration efforts, and autonomously navigate and update their 
maps. Figure 12. 

   
(a) First 3D map (b) Second 3D map (c) Third 3D map 

 
(d) Merged 3D point cloud 

Figure 12 3D point cloud merging 
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Task 2: Detection and Classification 
In this task, multiple models and technique were developed and tested. The purpose of 
these models being detecting the defects in the pipe networks. The following sections cover 
each of the developed models. 

Machine learning models 
Machine learning has been in common use for years now for several fields. A few models 
here were developed to be used for the detection of defects. Development of the machine 
learning models starts first with the dataset. An initial model was made using a few images 
captured in the concrete pipe in the structural lab to show how big of a dataset we can get 
from only a few images. The main pint with these models is that each sample is only a 
small patch of the image where our target class exists instead of using the whole image. 
This results in one image giving us a lot of samples. The outline of how the trained program 
works is as follows: 

• Crop crack from the image. 
• Loop over the object to get patches of square size (1/18 of vertical height of the 

image) 
• Calculate descriptive statistics per patch in the crack. 
• Arrange the descriptive statistics into an array per patch. 
• Construct a dataset for training the classifier. 
• Apply the trained classifier on each patch of the image and highlight if a crack is 

detected. 

An example of patches extraction for training is demonstrated Figure 13. 
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Figure 13 Training sample extraction for machine learning 

The data for training is extracted from small parts of the image as shown in Figure 4 and 
this allows us to extract a large dataset from a small number of images. For each patch, a 
number of statistics are then calculated for each color channels (once for each of the red, 
green, and blue color channels) which will constitute our training features. The statistics 
are as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀:         𝜇𝜇 =
∑𝑥𝑥𝑖𝑖
𝑀𝑀

 

𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆 𝑆𝑆𝑀𝑀𝑑𝑑𝑑𝑑𝑀𝑀𝑆𝑆𝑑𝑑𝑑𝑑𝑀𝑀:        𝜎𝜎 = �∑(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2

𝑀𝑀
 

𝑉𝑉𝑀𝑀𝑆𝑆𝑑𝑑𝑀𝑀𝑀𝑀𝑉𝑉𝑀𝑀:          𝑠𝑠2 =
∑(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2

𝑀𝑀
 

𝐾𝐾𝐾𝐾𝑆𝑆𝑆𝑆𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠 =
∑(𝑥𝑥𝑖𝑖 − 𝜇𝜇)4

𝑀𝑀(𝑠𝑠2)2
 

Where 𝑥𝑥𝑖𝑖 is the pixel value in the patch and 𝑀𝑀 is the total number of pixels in the patch. In 
addition to these statistics, the 𝑥𝑥 and 𝑦𝑦 positions of the patch are added as features resulting 
in a total of 14 training features per patch. The total number of samples extracted in the 
first model was 618 from 4 images. Preliminary results using a random forest classifier 
indicated that the model is very accurate. The detection results marking the position of 
cracks is shown in Figure 5. 

Crack Patches 

Center 
Patches 

No crack Patches 



23 
 

 

 
Figure 14 Machine learning preliminary results 

The model was further improved to include more attributes bringing the total number of 
features per patch to 26 and retrained using NCDOT inspection footage. The total number 
of samples for training was 1162 and four different classifiers were utilized to test the 
model. These classifiers were random forest (RF), support vector machine (SVM), logistic 
regression (LR), and K-nearest neighbor (KNN). The performance metrics and an example 
of the detection result are shown in Table  and Figure , respectively.  

Table 4 Machine learning models performance metrics 

Model 
5-Fold Cross Validation 

Accuracy Precision Recall F1-score 
Accuracy Std. Dev. 

SVM 0.81 0.02 0.84 0.84 0.84 0.83 
RF 0.82 0.03 0.82 0.82 0.82 0.81 

LR 0.69 0.03 0.66 0.65 0.66 0.65 

KNN 0.78 0.01 0.77 0.80 0.77 0.74 
 

The results indicate good accuracy when validated against known data but applying the 
model to some of the footage results in low detection accuracy. Reasons for this include 
the different lighting and conditions of each inspection location. To account for this, 
additional development time would be required to account for these factors. This can be 
done by incorporating depth data from the LiDAR into the training data. 
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Figure 15 Machine leaning model example results 

YOLOv5 model 
According to the National Association of Sewer Service Companies (NASSCO) 
documents and the Pipeline Assessment Certification Program, major pipeline defects can 
be classified under structural defects and operational and maintenance defects. For this 
model, six types of defects have been considered considering the availability of data as 
follows: 

- Crack 
- Fracture. 
- Surface damage. 
- Blockage. 
- Joint. 

In this study, two types of data have been used. Firstly, images have been collected from 
the prerecorded video of the sewer piping system. Data was provided by the funding 
agency, the North Carolina Department of Transportation (NCDOT). 

From 111.2 GB of video files, files have been selected of 31.8 GB (51 recorded videos) 
considering the two factors, pipe types (only RC pipes) and the considered defects type for 
that study (Crack, Fracture, Surface Damage, and Deposit (left) and obstacle (right)). From 
the selected recorded videos using Python, the images were captured every 3 seconds. 
Initial images were 3246 nos., which was further shortened to 154 nos. by removing the 
bad images that may reduce the efficiency of the further preprocessing. 

Secondly, 2D images have been collected from a 3D scan; in that case, a high-resolution 
3D scanner has been used. In this data collection process, an Artec3D scanner was used. 
The joint data was extracted using this method and is considered synthetic data. Figure 16. 
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(a) 3D scanner setup (b) Post processing (c) 3D model 
Figure 16 Data collection from 3D scanner 

The total number of images was not much so more data was needed. To address that issue, 
the extracted images (181) were processed to augment the dataset, Figure 17. The 
augmentation was performed as follows:  

a) Flip the images: In that case, the original data set images have been flipped only 
vertically direction. 

b) RGB to Gray: All the images have been converted to grayscale. 
c) Rotation 1: All the initial data set has been rotated to 45 degrees. 
d) Rotation 2: All the initial data set has been rotated to 90 degrees. 
e) Rotation 3: All the initial data set has been rotated to 180 degrees. 

 

Figure 17 Dataset Augmentation 

 The dataset size is shown in Table  for each considered defect class before and after 
augmentation: 
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Table 5 YOLOv5 model dataset size per class 

Types of defects 
Number of images before 

augmentation 
Number of images after 

augmentation 
Crack 39 234 

Fracture 39 234 
Surface Damage 39 234 

Blockage 39 234 
Joint (synthetic) 25 150 

Total 181 1086 
 

The state-state-of-the-art model YOLOv5 has been trained and tested in this project and 
the architecture of the model is shown in Figure . The backbone network convolves the 
input image and converts it into feature maps of different sizes. The neck network fuses 
high-level and low-level feature maps, and the fused feature maps are input into the detect 
network to detect objects in the picture [48]. 

 

Figure 18 Overall network structure of the YOLOv5s model 
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The initial training hyper parameters were set as follows in Table 6: 

Table 6 YOLOv5 Training hyper parameters 

Parameter Value 
Learning rate 0.01 
Weight  decay 0.0005 

Momentum 0.937 
Batch size 32 

Epoch 100 
Three performance metrics were used to compare the models’ performance, these metrics 
are as follows: 

𝑃𝑃𝑆𝑆𝑀𝑀𝑉𝑉𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑀𝑀 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 +  𝐹𝐹𝑃𝑃
  

𝑅𝑅𝑀𝑀𝑉𝑉𝑀𝑀𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝐹𝐹𝐹𝐹 +  𝑇𝑇𝑃𝑃
 

𝐹𝐹1 𝑆𝑆𝑉𝑉𝑑𝑑𝑆𝑆𝑀𝑀 =
2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

  

Where, TP = True Positive, FP= False Positive, FN= False Negative 
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The model was retrained with different parameters and Table  shows the results of the 
different models, where model 9 shows the maximum F1 score. 

Table 7 YOLOv5 Models results 

Model Batch Size Epoch Precision (P) Recall 
(R) F1 

1 32 50 0.679 0.67 0.67 
2 16 10 0.385 0.565 0.46 
3 16 10 0.489 0.544 0.52 
4 16 20 0.567 0.616 0.59 
5 16 30 0.631 0.628 0.63 
6 16 40 0.715 0.655 0.68 
7 16 50 0.648 0.682 0.66 
8 32 50 0.674 0.681 0.68 
9 32 100 0.714 0.662 0.69 
10 32 200 0.71 0.648 0.68 
11 8 20 0.58 0.63 0.60 
12 8 50 0.711 0.662 0.69 
13 8 20 0.594 0.638 0.62 
14 8 50 0.683 0.69 0.69 
15 8 100 0.664 0.666 0.66 

 

The following confusion matrix in Figure 19 shows the predicted results of the validation 
data of all the classes, crack (CR), joint (JO), fracture (FR), surface damage (DA), and 
Deposits and obstacles/Obstructions (BL). The performance metrics for model 9 are also 
shown in Figure 20 for each defect class vs. the confidence level which shows the joints 
having the maximum confidence level and cracks having the lowest. 
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Figure 19 Confusion matrix of model 9 

  

(a) F1 score vs. confidence curve (b) Precision vs. confidence curve 

  

(c) Recall vs. confidence curve (d) Precision vs. confidence curve 
Figure 20 Performance metrics vs. confidence curves for model 9 
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YOLOv7 model 
Following on the same deep learning models, three different deep learning models were 
developed and tested on the NCDOT dataset. These models were the SSD MobileNET, the 
YOLOv5, and the Faster R-CNN. The difference being they were trained and tested on 9 
different defect classes of a total of 16 defined classes. The idea being that the best model 
would then be further improved and retrained with all 16 classes. These classes are shown 
in Figure . 

 

Figure 21 Defect classes 

The models were trained with different backbones and tested using a computer with an 
NVIDIA GeForce RTX 3080 GPU. The performance of these models indicates that the 
YOLOv5 model while having the least mean average precision (mAP), would be the most 
appropriate. This is due to speed of the processing per frame coupled with the difference 
in mAP being small. The model was chosen to be further improved and include more 
classes.  
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The performance of the three initial models is shown in Table 8 and Figure 22.. 

Table 8 Initial models speed vs. accuracy 

Model Dataset Backbone Mean Average 
Precision, mAP (%) 

Seconds per 
frame 

SSD 
MobileNet 

NCDOT 
2017-2020 MobileNet 89.6 12 

YOLOv5 NCDOT 
2017-2020 DarkNet 87.5 0.89 

Faster R-
CNN 

NCDOT 
2017-2020 

Regional Proposal 
Network 91.2 90 

 

   

   

(a) SSD MobileNet (b) YOLOv5 (c)Faster R-CNN 

Figure 22 Initial models accuracy and total loss curves 

The YOLOv5 model was chosen and further developed. It was later swapped with 
YOLOv7 model which was then trained with all 16 classes and presents the best 
performance. The performance curves and the confusion matrix of the final model are 
shown in the following Figures 23 and 24. 
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(a) Mean average precision (mAP) (b) F1 score curve 

Figure 23 Final YOLOv7 model performance curves 
 

 

Figure 24 Final YOLOv7 model confusion matrix 

Applying the model on images taken from the NDOT inspection videos also shows the 
accuracy of the detection in Figure . 
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(a) Longitudinal cracks and 

deformation (b) Joint offset 

  
(c) deposits (d) deposits and holes/dents 

Figure 25 Structural defects detected by final YOLOv7 model 
Defect quantification 
After locating the defects, the next step is  to quantify them. For this purpose, two deep 
learning models were developed and compared. The first being Mask R-CNN with a region 
proposed network (RPN) backbone and the second being Mask SSD with a MobileNet 
backbone. The architecture of both models is shown below in Figure 26. 
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(a) mask R-CNN architecture 

 
(b) mask SSD architecture 

Figure 26 Segmentation models architecture 
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The mask R-CNN model uses ROI align, which makes it ideal for close-up image analysis 
and quantification of defects. The masks resulting from the ROI align are shown below in 
Figure 27. 

 

 

 

Figure 27 Generated mask obtained from ROI align 

Both models were compares and the difference between them is shown in Table . 

Table 9 Comparison of performance of two different instance segmentation techniques 

Model Mean Average Precision 
(mAP) 

Inference time in 
milliseconds (ms) 

Mask SSD 0.193 ~167 
Mask R-CNN 0.320 ~400 
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Task 3: Collecting Data from Sensor Networks 
In this task, the high-quality 3D point cloud is presented with the pipe circularity 
calculation and the SLAM model which is sued as another method for mapping the pipe 
and tracking the robot location. 

3D point cloud segmentation 
The Artec Ray 3D scanning technology enables the generation of highly detailed 3D point 
clouds. With this rich dataset, we can perform segmentation techniques to extract specific 
features from the point cloud, such as obtaining cross-sectional views of pipes for 
circularity analysis. By segmenting the point cloud, we isolate the region representing the 
pipe, allowing us to extract a cross-sectional profile. This profile provides valuable 
information about the shape and geometry of the pipe at a specific location. We have used 
the Artec Ray 3D scanner to get a detailed 3D point cloud for the pipe we have in the 
structural lab to get the cross section. Figure 28. 

   

(a) 3D point cloud mdoel (b) Point cloud segmentation (c) Cross-section 

Figure 28 3D point cloud cross-section extraction 
Pipe circularity 
To assess circularity, we fit ellipses to the extracted cross-sectional contour of the pipe. 
The ellipses provide an approximation of the circular shape, and their parameters can be 
used to derive important data for determining the circularity of the pipe. The process is 
shown in Figure . 

   

(a) Pipe cross-section (b) Filtering the binary 
image 

(c) Fitting curves to the 
detected shapes 

Figure 29 The process of fitting the ellipse of the cross section 
By analyzing the ellipse data, we can extract relevant measurements, such as the major and 
minor axes lengths, eccentricity, and position of the ellipse center. These parameters allow 
us to quantitatively evaluate the circularity of the pipe, providing insights into its deviation 
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from a perfect circle. An ellipse is fitted on every shape in the final figure shown in Figure 
c and then we choose the most appropriate on from the list based on the circularity value 
calculated for every fitted ellipse. The ellipse circularity is calculated by dividing the length 
of the semi-minor axis and the semi-major axis. The equation is as follows: 

 

The calculated circularity values are then shown and we choose the one most appropriate. 
The process is shown in Figure . 

 
 

 
(a) Ellipse elements (b) Calculated circularities 

Figure 30 Circularity calculation 
Pipeline SLAM 
In addition to the previously presented mapping algorithm in Task 1, another model was 
developed.  Which uses the same lidar for defect detection (LiDAR Camera L515) to map 
the pipe. This SLAM model is deployed using the Robot Operating System (ROS) of 
Ubuntu 16.04 operating system. The developed SLAM model is compared to the existing 
ORB-SLAM2 to evaluate effectiveness in terms of relative pose error (RPE). SLAM 
models are used to construct a 3D map of the pipe and to detect features in it. Both the 
existing and the proposed model are compared in Table 10. 

Table 10 Absolute trajectory error comparison of proposed and existing SLAM models 

 Error Estimation 
Framework RMSE (m) Mean (m) RPE Translation (m) RPE Rotation (m) 

ORB-SLAM2 0.151 0.155 0.056 0.089 

Proposed System 0.137 0.123 0.042 0.071 
 

The proposed system has lower error and is better performing. The difference is further 
demonstrated in the results shown in Figure  and the graphs in Figure . 

𝐶𝐶𝑑𝑑𝑆𝑆𝑉𝑉𝐾𝐾𝑅𝑅𝑀𝑀𝑆𝑆𝑑𝑑𝑆𝑆𝑦𝑦:               0 ≤
𝑠𝑠𝑀𝑀𝑠𝑠𝑑𝑑 − 𝑠𝑠𝑑𝑑𝑀𝑀𝑑𝑑𝑆𝑆 𝑀𝑀𝑥𝑥𝑑𝑑𝑠𝑠
𝑠𝑠𝑀𝑀𝑠𝑠𝑑𝑑 − 𝑠𝑠𝑀𝑀𝑚𝑚𝑑𝑑𝑆𝑆 𝑀𝑀𝑥𝑥𝑑𝑑𝑠𝑠

≤ 1 
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(a) ORB SLAM2 feature detection (b) Proposed model feature detection 

  
(c) Map and trajectory estimation of 

ORB SLAM2 
(d) Map and trajectory estimation of 

proposed model 
Figure 31 comparison of results from ORB SLAM2 and proposed SLAM models 
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(a) Position x error (b) Position y error 

  
(c) Position z error (d) Orientation error 

Figure 32 ORB SLAM2 and proposed model errors comparison 
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Task 4: Data Reduction 
 

Crack damage detection in industrial and civil constructions has long been an issue. 
Physical and operational inspections of sewer pipelines are essential for maintaining 
system serviceability. These networks are too old and nearing the end of their design life; 
in the meantime, rising environmental and health standards, rising demands, and 
constrained budgets have all made the problem more difficult to solve. Both manual and 
machine detection methods are used in traditional crack detecting technology. The manual 
detection method is widely regarded as less accurate and time-consuming. Closed-circuit 
television (CCTV) inspections of municipal sewer pipelines are known to be time-
consuming, costly, and prone to errors, largely owing to operator fatigue or low-level 
experience. Automated defect detection can be a useful tool for maintaining the quality, 
accuracy, and consistency of condition data while also lowering inspection time and 
expense. New methods of autonomous inspection are proposed. This technology uses smart 
robots and sensors equipped with artificial intelligence-based techniques to access areas 
that are difficult for humans to reach, reduce decision makers discrepancy and the stress of 
analyzing the video and focus on more critical analysis. During the pipe condition 
assessment, video files, pictures, and other scans like LiDAR and 3D are used to acquire a 
lot of data. This becomes cumbersome to interpret and make meaning out of. In the context 
of human decision-making, we aim at reducing and reordering the data to show to the 
human inspectors to enhance their decision performance. The proposed method is based 
on computer vision and pattern recognition algorithms that have proven to improve the 
proficiency of the inspection process in identifying and locating important features and 
defects. This part of the project aims to extract the key information from this huge data and 
present the data to decision-makers or inspectors to make the decision-making process 
seamless and cognitively less challenging. 

INTRODUCTION   
Sewer condition evaluation is crucial for urban asset management since system failure has 
a major impact on both municipalities and users. With a limited recurring budget, the 
assessment offers the foundation for optimizing the restoration plan. A complete structural 
inspection of the sewer pipes is required to provide a thorough condition evaluation [49].  
Detecting crack damage in industrial and civil structures has long been a problem. 
Inspections of sewer pipelines, both physical and operational, are required to keep the 
system working. Because the presence of a crack reduces the value of civil infrastructure, 
it is vital to determine the severity of the crack. Crack detection and classification 
techniques combined with quantitative analysis are essential for determining the severity 
of a crack. The length, width, and area are the different quantitative measures. The number 
of images acquired for analysis is rapidly increasing due to rapid technological 
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advancements. As a result, civil infrastructure requires autonomous crack detection and 
classification algorithms. 

A crack is the whole or partial separation of two or more concrete components caused by 
fracturing or breaking. Cracks can form on surfaces such as buildings, bridges, roads, 
pavements, railway tracks, automobiles, tunnels, and aircraft. The two types of cracks that 
might be identified are active and dormant cracks. The direction, width, and depth of active 
cracks change with time, whereas the direction, width, and depth of dormant cracks remain 
constant. Both active and dormant fractures allow moisture to enter, which can cause 
further damage if not fixed. Active cracks include longitudinal cracks, transverse cracks, 
crocodile cracks, and reflection cracks. 

There are different codes to categorize these cracks depending on the features and 
properties. According to the pipeline assessment certification program (PACP) guidelines, 
once a crack is deemed critical it is categorized into five distinct classes. These categories 
are Longitudinal, Circumferential, Multiple, Spiral, and Hinge crack. The category is 
majorly based on the crack run along or across the length of the pipe, the position, or a 
combination of these cases. For example, Crack Longitudinal (CL) runs along the length 
of the pipe while Crack Circumferential (CC) is transverse to the length of the pipe. 

Crack detection is an image processing technique for automatically detecting a crack in an 
image. Image processing techniques include segmentation, morphological operations, 
Sobel edge detection, cannel edge detection, Otsu's method, gradient method, clustering 
method, least square method, histogram equalization method, particle filter, maximum 
entropy method, wiener filter, and wavelet transform. 

The main goal is to make visual inspection more objective and also promote data-driven 
asset management. However, there are several obstacles to achieving this goal. Data 
collection and processing is a huge problem. For every inspection, video data is collected 
which is cumbersome and time-consuming to analyze. Inspection video data analysis is 
challenging. This data can be categorized as Big data because of the volume, velocity, 
variety, and veracity. A standard RGB data collects up to 108k images per hour, and with 
a robotic inspection system, data collection is done with fast speed. The video data also has 
different variations, cluttered background, and noise which can affect the data quality. 
Letting inspectors watch inspection videos for hours and days to locate the desired regions 
of interest is low in efficiency and easily triggers the development of fatigue. Therefore, it 
is important to employ data reduction techniques to make the decision-making process 
seamless. 

In the present work, an image processing model that automatically detects cracks and other 
types of defects such as rust and void in concrete pipes from inspection video obtained 
from autonomous robot navigation. The proposed model also extracts key features like the 
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width, length, depth, and type of the crack and presents the information visually in an 
understandable manner. Further, post-processing is also done to reduce the data being 
processed and stored by identifying the location and type of crack on the pipe geometry in 
a simplified manner. 

METHODS 
The proposed method aims to enhance the proficiency of the inspection process for 
identifying and locating important features and defects in underground sewer pipes, 
leveraging computer vision and pattern recognition algorithms. Specifically, the YOLOv3 
(You Only Look Once version 3) model is employed for crack detection due to its proven 
effectiveness in object detection tasks. This section provides a detailed overview of the 
chosen algorithm, its pre-processing requirements, and the key steps involved in the 
detection process. 

YOLOv3 Model Selection: 
The YOLOv3 algorithm is a deep learning-based approach that has demonstrated 
remarkable performance in object detection tasks. Its ability to detect multiple objects in 
real-time with high accuracy makes it well-suited for sewer pipe inspection. By selecting 
the YOLOv3 model as the core algorithm, our method aims to leverage its powerful 
capabilities to identify and locate cracks within the sewer pipe system. 

Pre-processing of Data: 
Prior to feeding the data into the YOLOv3 model, certain pre-processing steps are required 
to ensure optimal performance. These steps typically involve image preparation and 
normalization. The input images are typically resized to a standard size to ensure 
consistency and facilitate efficient processing. Additionally, normalization techniques such 
as mean subtraction or scaling may be applied to enhance the model's ability to detect 
cracks under varying lighting conditions. 

YOLOv3 Architecture: 
The YOLOv3 algorithm adopts a deep convolutional architecture known as darknet as its 
feature extraction network. The darknet architecture comprises multiple layers of 
convolutional neural networks (CNNs) that learn hierarchical features from the input 
image. These learned features are then used to predict bounding boxes and class 
probabilities. Notably, YOLOv3 employs anchor boxes, which are pre-defined dimension 
clusters, to predict the bounding boxes of objects within the image. 

Bounding Box Regression and Confidence Scores: 
The YOLOv3 algorithm outputs four coordinate values (tx, ty, tw, th) for each predicted 
bounding box, representing the coordinates of the box's top-left corner, its width, and its 
height, respectively. These values are obtained through regression operations. 
Additionally, confidence scores are generated to indicate the precision of the predicted 



43 
 

bounding box. A higher confidence score suggests a higher likelihood of the grid 
containing an object. Furthermore, class probabilities are assigned to each predicted 
bounding box, enabling the identification of different types of cracks. 

Object Detection and Localization: 
The YOLOv3 algorithm employs a grid-based approach to detect and localize objects. By 
dividing the input image into a grid, the algorithm predicts bounding boxes for each grid 
cell. The size of the predicted bounding box is adjusted based on the anchor boxes, which 
provide prior knowledge about the expected dimensions of objects. The YOLOv3 
algorithm then applies non-maximum suppression to remove redundant bounding box 
predictions and retain the most accurate and relevant ones. 

In summary, the proposed method utilizes the YOLOv3 algorithm as a computer vision 
and pattern recognition tool for crack detection in underground sewer pipes. Through 
appropriate pre-processing of the data, the YOLOv3 model is trained to identify cracks by 
predicting bounding boxes and assigning confidence scores. By leveraging the power of 
deep convolutional networks and anchor boxes, the algorithm exhibits remarkable 
performance in accurately detecting and localizing cracks, thereby improving the 
efficiency and effectiveness of sewer pipe inspection processes. The architecture of the 
proposed method is shown in Figure . 

 

 
Figure 33 Overall architecture of the proposed method 

Data Acquisition: 
The data in this experiment are based on images collected from a test concrete pipe. The 
system proposed is a custom system, hence it requires using custom images peculiar to the 
inspection situation to reduce the complexity of modeling and training. The concrete pipe 
was scanned to inspect the internal condition and identify the presence of a crack. The 
video from the inspection was split into image frames. A total of 205 images were obtained. 
Three defect types (crack, void, and rust) were identified and correctly annotated using the 
LabelIMG software as part of the image pre-processing step in the deep learning modeling. 
The picture resolution is (480 * 848) pixels in the format of JPG. A sample of the ground 
truth data is shown in Figure . 
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The original collected defect images are only 205. For deep-learning tasks, to obtain a 
model with good generalization performance and high accuracy, this number of images 
data is not enough. The resolution of the original pictures is 480× 848 pixels, and the pixels 
are large and not suitable for direct input to the neural network. The input image size of the 
neural network is too large, which will cause too much memory overhead. The number of 
layers of the neural network is bound to increase. The parameters of the neural network 
also increase exponentially, which leads to an increase in video memory and training time 
and a decrease in training batches, making the model show poor performance. To solve 
these problems, the experiments were performed with the sliding window cropping 
technique, which uses 416× 416-pixel window sliding on the original picture and cropping 
line by line without overlapping. The resolution of the cropped picture is 416× 416 pixels. 
To improve the generalization ability of the model, it is necessary to perform data 
augmentation of the crack pictures, including horizontal flip, vertical flip, rotation 90/180◦, 
random zoom aspect ratio, random cut, brightness, and saturation change. After 
augmentation, the total number of images increased to 348 images. 

 

 
Figure 34 Ground truth data based on initial annotation 

RESULTS & DISCUSSION 
The proposed method was evaluated using a dataset comprising 348 original images of 
underground sewer pipes. Following the widely accepted 70/20/10% data splitting rule, the 
dataset was divided into training, validation, and test sets. Specifically, 244 samples were 
used for training, 70 samples were allocated for validation to assess the model's 
generalization performance, and an additional 34 samples were reserved as an independent 
test set. The training process was conducted for a duration of 0.484 hours over 200 epochs. 
During this training period, the model underwent iterative updates to improve its 
performance. Upon completion, the trained model achieved a precision rate of 
approximately 97.8% and a recall rate of 85.8%. The mean average precision, which 
measures the model's accuracy in detecting objects, reached a value of 78.6%. The graphs 
in Figure  depicts the training process and the achieved model precision and recall. 

The training process was carried out on the high-performance Google Colab computing 
platform. It has 1XTesla T4 GPU, 2496 CUDA cores, and 12GB GDDR5 VRAM.  
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Figure 35 Model Precision and Recall 

To evaluate the model's performance on previously unseen data, it was tested on images 
that were not included in the training or validation sets. The results of this testing phase are 
presented in Figure . Notably, the detection model demonstrated an impressive ability to 
correctly classify approximately 70% of the previously unseen data. In terms of precision 
and recall for specific classes, the model exhibited high performance in identifying voids 
and cracks. A summary of the results is provided in Table 11. The precision and recall rates 
for these classes were consistently robust. However, the individual performance for the rust 
class was comparatively lower. This discrepancy can be attributed to the limited number 
of rust images available for training. Increasing the quantity of rust images in the training 
dataset may enhance the model's performance on this class. 

Table 11 Model Accuracy and Performance 

Class Images targets Precision Recall mAP@.5 mAP@.5:.95 

All 31 34 0.723 0.673 0.693 0.349 

Crack 31 13 0.769 0.769 0.742 0.267 

Rust 31 4 0.435 0.25 0.342 0.212 

Void 31 17 0.966 1 0.995 0.567 
 
In summary, the trained detection model showcased its effectiveness in underground sewer 
pipe inspection. It achieved high precision and recall rates, particularly for voids and 
cracks, while the performance on the rust class indicated room for improvement due to the 
limited training data available. These findings underscore the potential of the proposed 
method for accurate and efficient identification of defects in sewer pipe systems, with the 
scope for further enhancements through the inclusion of more diverse training samples. 
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Figure 36 Predicted defect of test data 

The model provides the percentage of confidence for the defect class it’s predicting. The 
threshold is 40%, so if the prediction confidence is less than 40%, the model is not going 
to capture. We want the model to give a level of confidence that inspectors can rely on. 

The recall is a very relevant metric for our application. We don't want to miss defects of 
any type because it could mean a catastrophic failure or even a sanitary overflow or even 
worse. The key is to train the algorithm to achieve a balance between recall and precision 
by not missing defects, but also not generating an inordinate amount of false positives. The 
model has an acceptable level of precision and recall to detect defects when present. Figure 
36. 

 
Figure 37 Radar chart for decision making 

The next step is to extract information about the individual crack. The properties of the 
crack are represented on the radar chart with reference to a default standard. The crack 
depth, length, width, type, and position are important features according to the PACP 
guidelines. To make the decision-making easy for whoever is inspecting the pipe. The radar 
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chart is proposed because of its ability to present more than two attributes at a time in a 
meaningful way. A visual representation of the radar chart is shown in Figure 38. 

Further, post-processing is also in works to reduce the data being processed and stored by 
identifying the location and type of crack on the pipe geometry in a simplified manner. So 
this way, the required details are captured without necessarily storing all the data collected. 
Figure 38 explains the idea of the post-processing phase in a basic manner. It shows a 
section of the pipe with the corresponding length and the defect type with the respective 
location in 2D. Any inspector can re-visit this, and easily pinpoint and make conclusions 
about the section. This will also help to track the history of the pipe, for example when it 
is required to see how the pipe has been functioning for the past months or years, it can be 
easily compared and reviewed. 

 
Figure 38 Post-processing representation of pipe profile  
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Field Demo 
In this section, the field demo we performed is presented. The field demo was performed 
in 4253 Camp Burton Road, McLeansville, 27301-9255 on June 16th, 2023. The site is 
shown below in Figure 39. 

 

Figure 39 Field demo site 

In order to use the developed system, the computers were setup next to the inspection point, 
Figure 40. 

  

Figure 40 Computers setup 

At the time of the demo, a laptop had not yet been setup for using the inspection system so 
the main computers were used. The robot used for the demo was the husarion ROSbot and 
it was deployed in an 18 inch pipe. See Figure 41. 

    

Figure 41 Husarion ROSbot positioned at pipe entrance with tether being connected 
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At that time, the wireless connection between the robot and the computers had not yet been 
setup so it was dependent on the tether. The results of the defect detection algorithm was 
shown to the NCDOT engineers present at the time as shown in Figure 42. 

 

 

Figure 42 NCDOT engineers examining the results during the field day. 

It was concluded from the field demo that the focus needed to be on setting up a laptop 
with the required algorithms and the wireless communication with the robots. This would 
greatly enhance the usability of the developed system. 
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Conclusions 
In conclusion, this research has presented a holistic approach for automated detection and 
classification of sewer pipe defects using a deep convolutional neural network coupled with 
advanced navigation and mapping algorithms. While it is important to note that an 
automated visual inspection system cannot fully replace human inspection, it serves as a 
powerful tool to enhance the quality, objectivity, and feedback of pipe inspections. The 
system developed in this study leverages deep learning methods to accurately label defects 
and features in pipe inspection videos, thereby accelerating the production of condition 
reports and critical decision-making processes related to state infrastructure and assets. It 
also provides the framework for using robots that automatically maneuver and map the 
area inspected. 

By automating the detection and classification of sewer pipe defects, the developed system 
offers several notable benefits. Firstly, it improves the accuracy of defect identification, 
reducing the likelihood of escapes and ensuring a higher level of quality in inspection 
outcomes. Secondly, the system enhances objectivity by removing human bias from the 
detection process, leading to more consistent and reliable results. Moreover, the system 
provides valuable data visualization tools, facilitating intuitive decision-making processes 
for infrastructure management professionals. 

The implementation of this system is expected to yield significant long-term advantages. 
By reducing the reliance on manual inspection methods, it minimizes overall inspection 
costs and relieves stress on human inspectors. The increased efficiency in producing 
condition reports and making critical decisions enables timely maintenance interventions, 
contributing to the longevity and sustainability of sewer pipe systems. 
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Implementation and Technology Transfer Plan 
 

A system developed for hydraulic concrete pipe inspection can be transferred to support 
NC DOT Material and Test Unit for underground concrete pipes inspection. 

This includes training materials; hands-on training; field demonstration and software 
development and training. The training also will include robotic programing control, and 
image processing of 2D and 3D scans.  

The system will include the following items as shown in Figure 43: 

1. Pipe circularity evaluation; done from the 3D Scan of the Pipe.  
2. LiDAR 3D point cloud, done with the 3D Lidar on a ground robot.  
3. Defect classification; surface defect detection and capability; 3D Mapping.  
4. The following hardware and software are transferred:  

a.  A main control computer,  
b. Python-based Algorithm,  
c. A ground robot and 3D sensors including Intel RealSense D435 camera, 

Intel RealSense L515 camera, other necessary Lidar and position sensors,  
d. Robot control and data collection/processing algorithms. 

 

 

Figure 43 The proposed technology transfer system. 

  

Capability 1: Pipe circularity

Capability 2: LiDAR 3D point cloud

Capability 4: Surface Defect Detec�on

Capability 3: 3D Mapping

Capability 5: Defect Classifica�on

Pipe Inspec�on System: 
ROSbot with Sensors
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